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New chemical access has been developed for the synthesis of pyran core embedded derivatives from 1,3-
diketones and 1,3-diketoesters, in which the active methylene group of 1,3-diketone or 1,3-diketoester
was alkenylated with three equivalents of alkenyl bromides in presence NaH to give bisalkenyl 1,3-dike-
tones or 1,3-diketoesters and the resultant bisalkenyl 1,3-diketones or 1,3-diketoesters were reacted with
AlCl3 at room temperature to furnish pyran core embedded derivatives in good to excellent yields.

� 2010 Elsevier Ltd. All rights reserved.
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Pyran core is embedded in several natural products of biological
importance such as coumarins (I),1 terpenoids (II),2 flavonoids
(III),3 anthraquinones (IV),4 alkaloids (V),5 (Fig. 1). Several groups
described synthesis of these pyran intermediates using a,b-unsat-
urated aldehydes and 1,3-diketones by formal [3+3] cyclo-addition
in presence of Lewis acid as catalyst,6 or a reaction between an
activated a,b-unsaturated iminium salt and 1,3-diketones,7 or pal-
ladium catalyzed tandom Stille-oxo-electrocyclization reaction be-
tween 2-iodenones and 4-cis-stannylenones.8–11 Recently Moreau
et al. synthesized 3,4-dihydro-2H-pyran derivatives by addition
of enolizable b-diketones to a,b-unsaturated aldehydes and subse-
quent selective hydrogentation of resultant dihydro-2H-chrome-
nones using chiral phosphoric acid catalysts.12 Enolizable 1,3-
diketones are important building blocks and their usefulness in
heterocyclic preparations,13 pyrazole,14 isoxazole,15 triazole16 and
benzopyran-4-ones17 has been largely illustrated. These 1,3-dike-
teones are also key structural units in many chelating ligands for
lanthanide and transition metals.18 Rich synthetic potential of
1,3-dicarbonyl compounds (1,3-DCC) is due to variety of chemical
reactions with participation of ketone-methelene (polyketide)
fragment and their ability to incorporate electrophilic or nucleo-
philic functionalities.
ll rights reserved.

: +91 522 2623405.
r).
In continuation of our program on the synthesis of bioactive
natural products, we were interested in preparing 3,4-dihydro-
2H-pyran derivatives from enolizable b-diketones. The general
method for the synthesis of 3,4-dihydro-2H-pyran derivatives from
1,3-diketones involves the C-alkenylation of enolizable b-dike-
tones and subsequent cyclization in presence of acids such as
H2SO4, HCl, P2O5, acetic acid, Lewis acids etc.19 We therefore
carried out a prenylation reaction on cyclohexa-1,3-dione (1a)
and obtained mixture of C-2-prenyl-1,3-cyclohexadione (2a) and
C-2-bisprenyl-1,3-cyclohexadione (3a).20 Similar reaction was
attempted on bisprenylated 1,3-cyclohexadione 3a with different
Lewis acids to obtain dipyran system 5a (Scheme 1). None of them
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Figure 1. Pyran core embedded natural products (I–V).
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provided the anticipated dipyran 5a, however AlCl3 surprisingly
provided the 2-methyl-2,3,4,6,7,8-hexahydro-chromen-5-one (4a)
in reasonably good yields (Scheme 1).21 To best of our knowledge,
this unusual reaction (tandem dealkenylation and cyclization) with
AlCl3 was not reported earlier in the literature. To confirm the for-
mation of 4a from 3a, a similar reaction was carried out with other
bisprenylated diketones such as 5,5-dimethyl 2,2-diprenyl 1,3-
diketone (3b), 4,4-dimethyl-2,2-diprenyl-1,3-cyclohexadione (3c)
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Scheme 1. Synthesis of pyran derivatives (4a–d) from bisalkenylated 1,3-cyclo-
hexadione (3a–d). Reagents and conditions: (a) NaH in DMF at �20 �C, prenylbr-
omide b and d, AlCl3 and other Lewis acids in dry dioxane at rt for 3–5 h; (c) only
AlCl3 in dry dioxane at rt for 3–5 h.
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Scheme 2. Synthesis of tricyclic (4e–g) an
and bisprenylated 1,3-cyclopentadione (3d) which also gave
respective pyran derivatives (4b–d) under the same conditions in
reasonably good yields (Scheme 1). In case of 3c the corresponding
cyclized product 4c exclusively formed, might be due to steric
effect.

To explore the generality of the reaction, we focused to change
the alkenyl groups on 1,3-diketones. Bisgeranylated 1,3-cyclohex-
adione (3e), 4,4-dimethyl-1,3-cyclohexadione (3f) and 5,5-di-
methyl-cyclohexadiones (3g) and bisfarnesylated 4,4-dimethyl-
1,3-cyclohexadione (3h) were prepared from 1a–c and subjected
to further reaction with AlCl3, which again provided the respective
pyran derivatives 4e–h (Scheme 2) by tandem dealkenylation fol-
lowed by cyclization. It is noteworthy to mention here that in addi-
tion to formation of pyran system the side chain of geranyl and
farnasyl units further cyclized to give tricyclic (4e–g) and tetracy-
clic compound (4h) due to double and triple cyclization reactions,
respectively.

To demonstrate the applicability of this procedure to prepare
naturally occurring flavonoid derivatives III (Scheme 3) we synthe-
sized 3i from 1b and carried out cyclization with AlCl3 which
resulted in the synthesis of 7,7-dimethyl-2-phenyl-2,3,4,6,7,8-
hexahydro-chromen-5-one (4i).

Few mixed alkenylated 1,3-diketones such as 3j, 3k, 3l, and 3m
were prepared and subsequently reacted with AlCl3 to give 4a and
4b, respectively (Scheme 4). This indicates that AlCl3 preferentially
dealkenylates the bulky groups only.

To broaden the reaction utility, 1,3-diketoesters were chosen for
alkenylation (Scheme 5). Compounds 3n and 3o were synthesized
from 3-oxo-butyric acid ethyl ester (1e) and subsequently reacted
with AlCl3, which surprisingly provided 2,2,6-trimethyl-3,4-dihy-
dro-2H-pyran (4j) and 2,5,5,8-tetramethyl-4,5,6,7,8,8a-hexahy-
dro-4H-chromene (4k), respectively, instead of 6a or 6b and 6c
or 6d. Interestingly the decarboxylation reaction appears to be tak-
ing place before or after tandem dealkenylation and cyclization
steps (Scheme 5).

The reaction mechanism in the formation of pyran system ap-
pears to be the retro-Claisen rearrangement of one of the alkenyl
group of 3a to give intermediate VI and subsequent tandem dealk-
enylation and cyclization of second alkenyl group with enolic hy-
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Scheme 3. Synthesis of natural products like molecules (4i).

O

O

O

O
AlCl3

AlCl3

O

OR2
R1

O

O

R1

R2

R1

R2

R1

R2

3j: R1,R2=H; 51%
3k: R1,R2=CH3; 63%

4a: R1,R2=H; 61%
4b: R1,R2=CH3; 90%

3l: R1,R2=H; 48%
3m: R1,R2=CH3; 55%

4a: R1,R2=H; 61%
4b: R1,R2=CH3; 90%

Dry Dioxane,
R.T;. 3h

Dry Dioxane,
R.T;. 3h
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droxyl provides the desired pyran 4a and isoprene (7). The forma-
tion of 7 was confirmed by authentic sample of isoperene on TLC
and GC (Fig. 2).

The reaction with 8 did not provide the pyran 4c under similar
conditions, The attempts to synthesize 3,4-dihydro-2H-pyran
derivatives from bisallylated 1,3-diones (3p) also failed to provide
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Scheme 5. Synthesis of pyran derivatives (
the pyran core (4l), might be due to formation of O-alkenylated
intermediate (VIII) via 3,3-retro-Claisen rearrangement, (Scheme
6). It appears to be that breakage of C–O bond in 8 generates pri-
mary carbocation on the alkenyl group might not be feasible,
where as in the intermediate VI and VII breakage of C–O bond
leads to the formation of tertiary and secondary carbocation,
respectively. Further studies however are required to confirm the
exact reaction mechanism.

To determine the role of the solvents in the reaction time and
yields various solvents such as DMF, DMSO, H2O, THF, dioxane,
benzene, AcCN, EtOH, AcOH were used. Best results were obtained
only in presence of dioxane, EtOH and AcOH.

In conclusion a new chemical access has been developed for the
synthesis of pyrans and pyran core embedded derivatives from 1,3-
diketone derivatives such as bisalkenyl cyclohexa-1,3-diketone,
4,4-dimethyl-1,3-diketone, 5,5-dimethyl-1,3-diketone (dimedone),
cyclopenta-1,3-diketone and also 1,3-diketoesters in one step for
the first time using AlCl3. During this process we have prepared
several natural products like building blocks such as tricyclic
(4e–g), tetracyclic (4h) and flavonoid like intermediates (4i), which
can be utilized for the total synthesis of natural products I–III of
biological importance (Fig. 1; Schemes 1–3). Further work is in pro-
gress in our laboratory in this direction.
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